Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006046

ABSTRACT

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Subject(s)
COVID-19 , Viruses , Glycoconjugates/metabolism , Heparitin Sulfate/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Sialic Acids/metabolism , Sulfates , Virus Attachment , Viruses/metabolism
2.
Mol Cell Biochem ; 476(10): 3815-3825, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1263168

ABSTRACT

Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/pathology , Chagas Disease/pathology , Heparitin Sulfate/therapeutic use , Thrombosis/drug therapy , Thrombosis/pathology , Blood Platelets/immunology , COVID-19/immunology , Chagas Disease/immunology , Complement Activation/immunology , Endothelium/pathology , Humans , Pathogen-Associated Molecular Pattern Molecules/immunology , Platelet Activation/immunology , SARS-CoV-2/immunology , Trypanosoma cruzi/immunology
SELECTION OF CITATIONS
SEARCH DETAIL